ASME Section VIII, Division 2

For many fabricators and mechanical engineers ASME Section VIII Division 2 is a mystery. Why? Even though it has been around since its creation in 1968, most engineers and fabricators never get to use it. (1) It takes additional certification and a U2 stamp, (2) additional software for ASME Section VIII Division 2 calculations, (3) FEA software or a subcontractor to do FEA analysis for you, and (4) requires a registered Professional Engineer or access to one. Not only that, but not many owners and engineers specify ASME Section VIII Division 2 pressure vessels due to added work on their part (User Design Specifications – UDS), inspectors trained in Division 2, more inspection time, and added costs for engineering and fabrication. If you want more information about this subject, keep reading and discover the different sections of the ASME Section VIII Division 2 code. This is Part 2 of 2 parts on the discussion of the UDS.

ASME Section VIII, Division 2 – Sections 3 (Materials) and Section 5 (Design by Analysis) – FATIGUE ANALYSIS

One of the major differences between ASME Section VIII Division 1 and Division 2 is the ability to perform fatigue analysis during the design. Division 2 does this in two places in the Code; in the materials section (Part 3) and in the design section (Part 5).

What is Fatigue?

Section VIII, Division 2 of the ASME Boiler and Pressure Vessel Code (ASME 2015) defines fatigue as “… conditions leading to fracture under repeated or fluctuating stresses having a maximum value less than the tensile strength of the material.”(1) Fatigue damage in a metal is a progressive, localized, permanent structural change. This article takes a more detailed look at metal fatigue, including testing for fatigue, conditions affecting fatigue life of a pressure vessel, and examining vessels for signs of fatigue.

According to Harvey(2), the important factor is number of stress repetitions, not time in service. Fatigue in metals is a progression beginning with submicroscopic changes in grain structure of the metal, and consists of three main stages:

  1. Crack Initiation
  2. Crack Propagation
  3. Rupture

Once the initiation of a crack occurs, the crack grows a finite amount with each stress cycle until the remaining cross-sectional area is so small that a rupture occurs. Straightening the wire in a paper clip and bending the wire back and forth about a point until failure is a common example of fatigue.

Before fatigue life of a pressure vessel can be determined, fatigue life of material(s) of which it is constructed (number of cycles at a given stress level) must be known. The fatigue life of a material is determined by testing many identical samples to failure and their maximum pressure limits. Test samples are highly polished round bars as identical to each other as manufacturing can make them (see Fig. 1). A test bar is rotated with load applied so a fiber at the surface of the bar is in tension and then in compression as the bar rotates such that there is a full reversal of stress as shown (see Fig. 2).

The first bars are tested at high stress, so failure occurs relatively quickly. Succeeding bars are tested at lower and lower stress until the number of cycles reach 10 million. Most pressure vessel steels are considered to have infinite life at the stress level at which the number of cycles reach 10 million. It should be noted there is considerable scatter in data, with scatter increasing as the number of cycles to failure increases. Stress vs. number of cycles curve (S-N curve) is generated from test data (see Fig. 3). It is common practice to reduce stress by a factor of 2 or number of cycles by a factor of 20, whichever is more conservative when generating the S-N curves for design purposes. Reduction factors used for S-N curves cover scatter in the data, environmental effects, and size effects.

What Conditions Affect Fatigue Life of a Pressure Vessel?

A number of conditions affect the fatigue life of a pressure vessel. Some conditions listed below have a greater effect on fatigue life than others, but all affect fatigue life of vessels in some manner.

  • Cyclic stress state: number of stress cycles and the stress range
  • Geometry: sharp corners, small radii, and small fillets decrease fatigue life of a vessel component
  • Surface quality: polished surfaces increase fatigue life compared to non-polished surfaces
  • Weld quality: any defect in a weld decreases fatigue life. Weld surfaces are machined to increase fatigue life of a part
  • Material type: some materials are more fatigue-tolerant than others
  • Residual stresses: stresses resulting from the manufacturing processes such as forming, welding, etc., decrease fatigue life
  • Size and distribution of internal defects: inclusions such as sulfides in steel decrease fatigue life
  • Grain size: fine-grain steels are more fatigue-tolerant than coarse-grain steels
  • Environment: a corrosive environment decreases fatigue life
  • Temperature: extreme high and low temperatures decrease fatigue life

Review of the preceding list indicates any design feature or fabrication process that increases stresses, either globally or locally, in a pressure vessel may decrease the fatigue life of the vessel. Vessel design begins with selection of a fatigue-tolerant material, if possible. Features that minimize stresses in vessel are incorporated into the design. Sharp corners are eliminated, large radii are used in place of small radii, and transitions from one geometric shape to another are made as gradual as possible. If stresses are low enough, vessel life can be considered infinite. Vessel design is considered preliminary until completion of fatigue analysis.

Assume a simple case of a single fluctuating load on a pressure vessel with an equivalent stress amplitude of 250,000 psi for 30 cycles (see Fig. 4). From the S-N curve (Fig. 3), the number of cycles before failure at that stress level is 40 cycles, which exceeds the specified number of cycles, indicating the design is acceptable for the specified fatigue service.

In reality, pressure vessels are subjected to varying pressures, temperatures, and external loads. The user of a pressure vessel specifies all operating conditions and cyclic events to be considered in design of the vessel. A load histogram is prepared from the user’s design specifications information.

The load histogram calculates total equivalent stress amplitude at a location. Total equivalent stress amplitude is defined as one-half of the total equivalent stress range per Section VIII, Division 2. The equivalent stress range is the sum of the average stress across the solid section, bending stress in the solid section, stress at a structural discontinuity, thermal expansion stress, and stress from notches. Equivalent stress is calculated for each set of loads defined on the load histogram. Number of cycles specified for each equivalent stress is compared to number of cycles shown on the S-N curve for that stress. If the number of permissible cycles from the S-N curve is greater than the number of specified cycles, the vessel design is acceptable.

What is a Stress Cycle According to ASME Section VIII?

The stress induced in a pressure vessel shell as pressure goes from atmospheric to operating pressure and back to ambient pressure is one stress cycle. Many pressure fluctuations may occur between increasing and decreasing pressure (see Fig. 5). Stresses associated with pressure fluctuations and number of cycles must be determined. As complexity of loadings on the vessel increases, difficulty of counting stress cycles increases and becomes increasingly onerous. Rainflow counting algorithm, or other methods complying with ASTM E1049, Standard Practices for Cycle Counting in Fatigue Analysis, is used to count stress cycles and combine partial cycles into complete cycles.

What is Miner’s Rule?

There are multiple stress cycles with different stress magnitudes and associated number of cycles. Fatigue damage from each stress cycle is cumulative, and the effect of all stress cycles must be determined. Miner’s rule is used to evaluate the effects of all stress cycles on vessel fatigue life. Miner’s rule:

Where n1 is the number of specified cycles at stress level 1, n2 is the number of specified cycles at stress level 2, and n3 is the number of specified cycles at stress level 3, and so on. N1 is the number of permitted cycles at stress level 1, N2 is the number of permitted cycles at stress level 2, and N3 is the number of permitted cycles at stress level 3, and so on. If the sum of the ratios is less than or equal to 1.0, vessel design is acceptable for that point in the vessel. This process must be repeated at other points in the vessel where there are high stresses. Vessel design is acceptable when all points in the vessel satisfy Miner’s rule.

Actual life of a pressure vessel may or may not exceed the predicted life. If vessel operating loads are less than the loads used in fatigue analysis, vessel life will probably exceed the loads used to predict vessel life. Conversely, if operating loads exceed the predicted life, it is probable the actual life will be less than the predicted life. An actual end-of-life date cannot be defined with a high degree of certainty.

How Often Should Pressure Vessels Be Examined?

Pressure vessels should be visually examined on a regular basis throughout their lives for impact marks, scrapes, corrosion, erosion, wear, cracks; anything that changes internal and/or external surfaces of vessels. Each finding should be evaluated for its effect on fatigue life of the vessel. For example, pitting corrosion can greatly increase local stresses and dramatically decrease fatigue life of the vessel. It is good practice to thoroughly examine by visual and appropriate Non-Destructive Examination (NDE) methods the interior and exterior surfaces of the vessel when it has reached 50% of its predicted life. Results of this half-life examination are used to determine if the vessel is in condition for operation to predict the end of life or to revise predicted end of life.

As the vessel approaches predicted end of life, visual examination should be supplemented by other NDE methods in search for cracks in highly stressed areas of the vessel. The effect of any crack on fatigue life should be evaluated immediately as failure may be imminent. Failure may be a slow leak or may be catastrophic.

Regular examinations of vessels should be part of a plan to either replace the vessel at end of life, or to extend its life past its calculated fatigue life. A complete detailed history of the vessel is required to extend vessel life. History should include actual pressures and temperatures, inspection reports, etc. Actual operating loads may not have been of the magnitude used for fatigue analysis. It may be possible to extend vessel life when fatigue analysis is based on actual operating loads.

Are All Parts of a Pressure Vessel Equally Stressed?

No, not all parts of a pressure vessel are equally stressed. The most highly stressed areas occur at changes in geometry: nozzles, transitions in diameter, etc. Cracks can be repaired and cracked components replaced. Fatigue analysis of the repair or replaced component is required to extend vessel life past the original design life. Another alternative is to perform a fitness for service analysis per API(4) 579-1/ASME FSS-1. Fitness for service analysis provides an estimate of the number of cycles to failure.

Of course, the cost of replacing a vessel versus the cost of examination, repairs, and analysis required to extend vessel life is always a consideration. But, the planning and record keeping required to have the option to extend vessel life past its predicted life begins with the purchase of the vessel.

References:

1. ASME. VIII, Division 2 Alternative Rules, Rules For Construction of Pressure Vessels. New York: ASME, 2010.

2. Harvey, John F. Theory and Design of Modern Pressure Vessels. New York: Van Norstrand Reinhold Company, 1974.

3. *Modified version of ASME. VIII, Division 2 Alternative Rules, Rules For Construction of Pressure Vessels. New York: ASME, 2004 edition with the 2006 addendum.

This Is Presented to You as a Service from Boardman LLC. Located in Oklahoma City, Oklahoma.Since 1910, Boardman has been a respected custom fabricator. We take pride in our ability to take the most stringent specifications and requirements to provide a high quality solution to our customers. With more than 75 years of ASME Section VIII, Division I engineering experience, we can provide custom solutions to our customers. Contact us today to get started on your unique fabrication project.

Definitely a great team effort between HFS and Boardman to get this knocked out quickly with no mistakes.  Appreciate you and your teams help getting this across the finish line!

Reliability & Inspection

HF Sinclair

The BFS team is very responsive, conduct quality work, and produce detailed reports.  They have excellent level of support, responsiveness and quality work!

Construction Manager

Vestas

“I am glad you guys do the newsletters. Educate AND do the work. Most don’t do this. It is similar to what Dave Ramsay says about looking for a Financial Advisor… look for one with a heart of a teacher.”

Equipment Engineer

Fluor

“I would like to go out of my way to say this is the quickest I have seen a vessel come together. Your ability to manage this on such short notice does not go unnoticed and definitely will earn you some more business. Your professional approach and ability to keep this moving was amazing! I was hoping to see this thing through to the end and see about getting some Guiness world record trophy on our walls.”

Mechanical Engineer

Chevron

“Just wanted to send a quick thank you for sending these newsletters. I really enjoy them and share them with others at the office.”

Project Management

Kestrel Engineering

“Thank you for all your help on this order. Please let your team know that everything Boardman has done for this order has been top notch!”

Mechanical Engineer

Worley

“It was a real pleasure working with you and your team. I wish all vendors would have the same high quality team!”

Expeditor

Worley

“Your engineering team has gone above and beyond for our current projects. We have thrown quite a few changes at them and they have dug into code details that are not normally required to satisfy the requests of some of our SME folks. They are always available, even when they’re off or on weekends to help answer any urgent questions. I tried to find something we can do to help recognize the extra efforts, but could not come up with anything. Thank you for the efforts and willingness to work with us so closely on these urgent jobs.”

Mechanical Engineer

Chevron

“It was great pleasure and it was sure a huge effort pulled by Boardman organization. Promoting such events are very helpful to the engineering community in general but very few places realize the same. Boardman being exceptional and very hospitable place to be for this event. I want to say Thank You Boardman!”

Mechanical Engineer

Chevron

“The class was an excellent use of time and has increased my industry knowledge. Good mix of both end user and design engineer attendance which drove discussions into new directions. I will highly recommend to my firm for attendance next year.”

Mechanical Engineer

S&B Engineering

“Thank you and everyone at Boardman for an excellent 2 days of training and exceptional hospitality. While it gave me the opportunity to get out of the office for 2 days, it was also a great training/refreshing opportunity for me and on top of it, I got to visit your facility, which I think is quite impressive. Hope to have some more work in your shop soon. There are several folks here who were amazed when I told them that you guys had welding stations set up and each of us got to weld and try out as many as 4 welding processes. Please keep me posted on the next training session.”

Vessel Engineer

Burns & McDonnell

“I just wanted to say thank you very much to you and your team for all of the work that you put in to make this seminar possible. I was very impressed with the quality of the seminar. It is the best technical seminars I have been to. The classroom intermixed with shop time made the experience a one of a kind. The instructor is a wealth of knowledge. I was also very impressed with the care and concern that you had for those attending. You guys have superb customer service. I really appreciate the opportunity and it means a lot.”

Mechanical Engineer

MKEC Engineering

“Thank you guys very much for putting together the Pressure Vessel Fabrication presentation. I’ve heard great things from about the vessels currently in your shop. We look forward to building a long lasting relationship.”

Corrosion/Materials Engineer

Phillips 66

“The Boardman team’s expertise, experience and processes made our project easy. The communication between their team and mine ensured our project ran smoothly. I knew I could count on the work they sent. I look forward to working with a company that communicates well and takes pride in their work.”

Mechanical Engineer

Worley

“I just wanted to share some photos of the Deisobutonizer being lifted into place yesterday. None of this would have been possible without your efforts in both the manufacturing and transport of the tower. This is the largest structure on the project and you all deserve a lot of credit for this milestone. It was not only a pleasure to work with you all on this fabrication and hauling to site of the monstrosity but it was a privilege to have such a team behind us to make this happen with no incident and what on the surface seemed child’s play. You all should be very proud of yourselves and your collective teams and firms, without you none of this was even conceivable.”

Materials & Logistics

Cenovus Superior Refinery

“I worked with Boardman on a project involving multiple vessels. The team’s impressive knowledge of ASME Section VIII Div 1 was critical to the success of the project. I enjoyed seeing the vessels in person during an engineering design course at the Boardman facility. The team always kept me in the loop and ensured quality work from fabrication through shipment.”

Mechanical Engineer

Black & Veatch

“Boardman was great to work with from the initial bidding phase through procurement. It is clear that they value relationships and are very professional. I have worked with Boardman in the past, and they continue to meet the requirements of our projects and owners. I value our relationship and hope to continue to work with them in the future.”

Sr. Procurement Manager

Black & Veatch

“Thank you for the high level of communication on this project and the effort put into making things work. So far this project has gone smoothly and our efforts have not gone unnoticed. Specifically the time invested in making sure the anchor bolt pattern matched their existing foundation. Not sure if it is my place to say but you are highly regarded at this refinery.”

Mechanical Engineer

Merrick Engineering

“I am continually impressed with the level of quality and professionalism on this project from the beginning.”

Inspector

HF Sinclair

“Boardman was very professional throughout the engineering and design of this vessel. They did a really good job on fabrication.”

Project Manager

Chevron Phillips Chemical